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density as represented by a Fourier series with the 
observed structure factors as coefficients. This is a 
very interesting result, but it should be noted that the 
criterion for atomic position (maximum of electron 
density) is different from that of obtaining a least- 
squares fit for the entire electron density map, and that 
different weighting is required for atoms of differing 
atomic number. One would expect the least-squares 
fit to give a better estimate of the atomic positions, but 
in some applications it could be that the position of the 
maximum electron density is the focus of interest. 
Cruickshank (1952) has obtained results similar to 
Cochran's for the relation between peaks in a Patterson 
synthesis and refinement in a suitably weighted R2. 

These reflexions were stimulated by the problem of 
locating the halogen atoms in Cd analogues of apatite 
(Sudarsanan, Wilson & Young, 1972; a full account is 
in preparation). I am indebted to Professor R. A. 
Young for stimulating discussions and to Professor 
D. W. J. Cruickshank, Dr David Harker and Profes- 

sor M. M. Woolfson for helpful correspondence. 
Travel and subsistence expenses provided by The 
Royal Society and The William Waldorf  Astor 
Foundation made possible a visit to Atlanta during 
which the work was completed. 
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The possibility that two arbitrary lattices, 1 and 2, have a coincidence-site lattice (CSL) in common is 
examined. Let T be the 3 x 3 matrix that maps a basis of lattice 1 onto a basis of lattice 2 and let IITI[ be 
the absolute value of its determinant. It may be assumed that IITll >-- 1. There is a CSL if, and only if, T is 
rational. The main result is that the density ratio, Z'2, of coincidence points to points of lattice 2 is equal 
to the least positive integer n such that nT and nllTl[T -1 are integral matrices. A basis for the CSL can 
be determined quickly if lattices 1 and 2 are related by a rotation. 

Density of coincidence sites 

The coincidence-site lattice model of a grain boundary 
considers the lattices that correspond to the crystals on 
both sides of the boundary (for example see Brandon, 
Ralph, Ranganathan & Wald, 1964). Working with 
this model we have to find out whether the metric 
properties of the lattices and their observed relative 
orientation are such that the two lattices, which we 
shall call 1 and 2, have vectors in common. If there are 
common vectors, they will form either a linear, a 
planar, or a spatial lattice. In the last case we shall 
speak of a coincidence-site lattice (CSL) and shall 
denote by ~rl (or Z2) the ratio of the volumes of 
primitive cells for the CSL and for lattice 1 (or 2). Z'~ 
and L~2 are positive integers. Let the vectors b~,b2,b3 
form a basis of lattice 1 (i.e. b~, b2, and b3 span a primi- 
tive cell of lattice 1) and let b~,bz, b~ be a basis of 

lattice 2. We can write 

b'l = tllbl + tx2b2 -I- taab3 
b2 = t21bl -I- t22b2 -t- t23b 3 
b3 = talbl -t- ta2b2 -Jr t33ba , 

or, introducing matrix notation, 

where 
b ' = T b ,  

b ' =  b; , b =  b2 
b; b3 

and T is a 3 x 3 matrix. Let [ITII be the absolute value 
of the determinant of T. We shall call a matrix 'ra- 
tional' if all its nine elements are rational numbers and 
'integral' if all its nine elements are integers. In the 
Appendix we shall prove the following two theorems. 
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Theorem 1. Two lattices with bases b and ! b' have a 
CSL in common if and only if the matrix T satisfying 
b ' = T b  is rational. 

In the following we assume that T is rational. If 
primitive cells of the two lattices have different volumes 
we choose as number 1 the lattice with the smaller cell 
volume and have therefore IITII_> 1. 

Theorem 2. Z2 is the least positive integer such that 
~'2 T and z211Tll T-~ are integral matrices, Zx= IITI[Z2. 

Theorem 2 tells us that 2'2 can be computed as the 
least common multiple of the denominators in the 18 
elements of T and of ]ITll T-1. If primitive cells of 
lattices 1 and 2 have equal volumes then Z (=  Zx = Z2) 
is the least common multiple of the denominators in 
the elements of T and T -1. Let us compare this result 
with earlier efforts to determine Z. Fortes (1972) and 
Woirgard & de Fouquet (1972) propose methods to 
determine X that apply only if lattices 1 and 2 are 
related by a rotation and which seem to us more 
involved than our method. Santoro & MigheI1 (1973) 
studied the Cl_~'s generated by arbitrary lattices 1 and 
2; they do not give explicit expressions for Z' 1 and Z" 2. 
If lattices 1 and'2 are primitive cubic and related by a 
rotation then, choosing conventional bases, T -~ be- 
comes the transpose of T. Theorem 2 then tells us that 
X is the least common multiple of the denominators in 
the elements of T. A different proof for this special 
ease of Theorem 2 has been given by Grimmer, Boll- 
mann & Warrington (1974). 

Examples 
To compare the earlier methods with ours, we shall 

consider some of the examples treated by Fortes (1973) 
and by Woirgard & de Fouquet (1973). The examples 
concern the hexagonal lattice with axial ratio c/a= 
1/~, which corresponds to the h.c.p, structure. We 
introduce a basis for lattice 1 satisfying 

bl • bl = b 2  • b 2  = 1 , b 3  • b 3 - -  

bi • b 3  = b 2  • ba = 0 ,  bi • b 2  = - 1 2 ,  

and take for lattice 2 the basis b' obtained from b by 
the rotation we want to consider. For rotations about 
bl we find 

l 1 0 0 t cos co-  1 31/2 
T = 2 cos co ~ sin co 

21/2 41/2 
- - - 3 - s i n c o  - 3 sin co cos co 

T-1 is obtained on replacing co by -co. Theorem 2 tells 
us then that X equals the least common multiple of the 
denominators of 

cos co-  1 31/2 2 1/2 
2 , cos co, g sin co, a n d ~ s i n c o .  

Taking for tan (09/2) the same seven values as Fortes 
(1973) and Woirgard & de Fouquet (1973), we easily 
confirm their results. Still another method has been 
used by Warrington (1975) to determine the rotations 
that for the hexagonal lattice with c/a= 1/§ lead to 
CSL's with X_< 50. 

The next example will show that T and T -1 do not 
always have the same least common multiple of the 
denominators appearing in the nine matrix elements. 
If e~, e2, and ea are orthonormal vectors, take bx = 9e~, 
b2 = e2, ba = 3% and b[ = 9e2, b2 = %, b; = 3el. A 120 ° 
rotation about the axis e~ + e2+ e3 maps lattice 1 onto 
lattice 2 and b onto b'. The matrix T describing this 
rotation is 

(i9i) (i°!) T =  and T - l =  . 
0 3 

The least common multiples of the denominators are 
3 and 9 respectively, X=  9. 

Determination of the coincidence-site lattice 

The explicit determination of a basis for the CSL is 
particularly easy if we know bases b and b' of lattices 
1 and 2 such that bl =b~. We always know such bases 
if the two lattices are related by a rotation because 
then we can choose bl=b~ parallel to the rotation 
axis. T will be of the form 

( 1 0 0 1  
T =  t21 t22 t23 . 

\t31 t32 t33] 

Let t be the least common multiple of the denomina- 
tors of t2x, t22, and t23. There exists a unique integer n 
satisfying 0 < n < t  such that the numbers nl=nt2~+ 
(Z2/t)t3~ are integral for i=  1,2, 3. A basis for the CSL 
is formed by 

b~, tb2, and nb2+(Z2/t)b~. 

To find a basis of the CSL in the case b~=b~ we 
therefore compute Z2 according to Theorem 2 and try 
out which of the t integers n between 0 and t - 1  has 
the property stated above. 

This method to determine the CSL explicitly (at 
least if lattices 1 and 2 are related by a rotation) can 
be used also to find the DSC lattice, i.e. the lattice of 
the geometrically possible Burgers vectors for disloca- 
tions lying in the grain boundary. In fact, the CSL and 
the DSC lattice are related by a reciprocity relation as 
has been shown by Grimmer (1974). 

The author wishes to thank Dr Y. Iwasaki for his 
critical reading of the manuscript. 

A P P E N D I X  

To prove Theorem 1, assume first that b'= Tb, where 
T is rational. Let N be the least positive integer such 
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that NT is integral, w = N b ' = N T b  denotes a triple 
w~, w2, w3 of vectors that span a cell of the CSL, which 
will not be primitive in general. It remains to prove the 
converse: we assume now that the lattices with bases b 
and b' have a CSL in common and we let v be a basis 
for it. It follows that M and M'  defined by v = M b  = 
M'b '  are integral matrices. Writing b '=Tb  it follows 
that T = M ' - I M .  IIM'II being a positive integer, and 
[IM'I[M '-1 as well as M being integral, matrices, we 
conclude that T is rational. 

To prove Theorem 2, we make use of the following 
special form of a theorem on the 'elementary divisors' 
of an integral matrix (see for example: R6dei, 1967; 
van der Waerden, 1970). 

Elementary divisor theorem. Consider two lattices with 
bases B and B' such that B' = EB, where E is an integral 
matrix without a divisor common to all the nine ele- 
ments. There exist new bases for these lattices, B and 
/~' respectively, such that the matrix 12 sat isfying/~'= 
EB is diagonal. 0 0) 

12 = e 2 , 
0 e 3 

where e~= 1, e2=the largest common divisor of the 
nine elements of IIEll E-l, ea=J[El[/e2 . 

Before applying this theorem to our problem, we 
shall deal with the special case that T is integral. Then 
the CSL coincides with lattice 2, Z'I=IITII and 2"2= 1. 
Since IITII-> 1 prevents T -~ from being integral, when 
T is not integral we can now assume that neither T 
nor T -~ are integral. Let N and N '  be the least positive 
integers such that To = NT and To = N ' T -  ~ respectively 
are integral matrices. Applying the elementary divisor 
theorem with B = b  (the basis of lattice 1) and E=T0,  
we conclude: there exist new bases 6 and 6' for lattices 
1 and 2 such that T, the matrix satisfying 6' = T 6  has 
the form 

oo) 
t2 
0 t3 

ej IIToll 
where t j--  ~ and e a -  N N '  ' 

1 NIITll, t3=N' .  i.e. t l= -~ , t 2 -  N '  

Writing t2 =p/q, where p and q are integers without 
common divisor, we conclude that a basis of the CSL 
is given by 

N~'I=~I, qb~=qN]lTll/N'b2, ~'3=N'~3, 

and that XI=qNIITll ,  2`2=qN. n = q N  is the least 
positive integer such that nT and nllTII T-1 are integral 
matrices. This completes the proof of Theorem 2. 

References 

BRANDON, D. G., RALPH, B., RANGANATHAN, S. t~ WALD, 
M. S. (1964). Acta Met. 12, 811-821. 

FORTES, M. A. (1972). Phys. Stat. Sol. (b), 54, 311-319. 
FORTES, M. A. (1973). Scripta Met. 7, 821-823. 
GRIMMER, H. (1974). Scripta Met. 8, 1221-1223. 
GRIMMER, H., BOLLMANN, W. • WARRINGTON, D. H. (1974). 

Acta Cryst. A30, 197-207. 
RI~DEI, L. (1967). Algebra, Vol. 1. Oxford: Pergamon Press. 
SANTORO, A. & MIGHELL, A. D. (1973). Acta Cryst. A29, 

169-175. 
WAERDEN, B. L. VAN DER (1970). Algebra, Vol. 2. New 

York: Ungar. 
WARRINGTON, D. H. (1975). J. Phys. Paris, 36, C4, 87-95. 
WOIRGARD, J. & DE FOUQUET, J. (1972). Scripta Met. 6, 

1165-1174. 
WOIRGARD, J. & DE FOUQUET, J. (1973). Scripta Met. 7, 

825-830. 

A C 32A - 3* 


